Image fusion via sparse regularization with non-convex penalties
نویسندگان
چکیده
منابع مشابه
Non-convex Sparse Regularization
We study the regularising properties of Tikhonov regularisation on the sequence space l with weighted, non-quadratic penalty term acting separately on the coefficients of a given sequence. We derive sufficient conditions for the penalty term that guarantee the well-posedness of the method, and investigate to which extent the same conditions are also necessary. A particular interest of this pape...
متن کاملRecovering sparse signals with non-convex penalties and DC programming
This paper considers the problem of recovering a sparse signal representation according to a signal dictionary. This problem is usually formalized as a penalized least-squares problem in which sparsity is usually induced by a l1-norm penalty on the coefficient. Such an approach known as the Lasso or Basis Pursuit Denoising has been shown to perform reasonably well in some situations. However, i...
متن کاملComplexity regularization via localized random penalties
In this joint work with Gabor Lugosi (Pompeu Fabra University), model selection via penalized empirical loss minimization in nonparametric classification problems is studied. Data-dependent penalties are constructed, which are based on estimates of the complexity of a small subclass of each model class, containing only those functions which have small empirical loss. The penalties are novel sin...
متن کاملClustering of Data with Missing Entries using Non-convex Fusion Penalties
The presence of missing entries in data often creates challenges for pattern recognition algorithms. Traditional algorithms for clustering data assume that all the feature values are known for every data point. We propose a method to cluster data in the presence of missing information. Unlike conventional clustering techniques where every feature is known for each point, our algorithm can handl...
متن کاملAccurate Sparse-Projection Image Reconstruction via Nonlocal TV Regularization
Sparse-projection image reconstruction is a useful approach to lower the radiation dose; however, the incompleteness of projection data will cause degeneration of imaging quality. As a typical compressive sensing method, total variation has obtained great attention on this problem. Suffering from the theoretical imperfection, total variation will produce blocky effect on smooth regions and blur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition Letters
سال: 2020
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2020.01.020